CSE 561
Modeling & Simulation Theory and Application
Spring 2009

General:
Building/Classroom: BYAC-220
Lecture Days & Hours: Tu, Th., 1:30 – 2:45 pm
Course Portal: http://my.asu.edu (Classroom / Online SLNs: 15331 / 26194)

Instructor
Hessam S. Sarjoughian
Dept. of Computer Science & Engineering, School of Computing and Informatics
Bldg/Room: BY/476
Phone: (480) 965-3983
Fax: (480) 965-2751
Email: hss@asu.edu
URLs: http://www.eas.asu.edu/~hsarjou/index.htm
Office hours: Tu. & Th. 11:00 - 12:00 pm; and by appointment

Teaching Support
TA: TBD
Email: TBD
Bldg/Room: ACIMS, BYENG, 485

Textbooks

- *Introduction to DEVS Modeling & Simulation with JAVA: Developing Component-based Simulation Models*, B.P., Zeigler and H.S. Sarjoughian (available from ACIMS)

Required Notes:
- *Introduction to DEVS Modeling & Simulation with JAVA: Developing Component-based Simulation Models*, B.P., Zeigler and H.S. Sarjoughian (available from ACIMS)

Reference Textbook:

Other Related Reference Textbooks:
- *Model-Based Systems Engineering: an introduction to the mathematical theory of discrete systems and to the tricotyledon theory of system design*, W. Wymore, 1993

Reference Textbooks on Java:
- *Onto Java online*, 3rd Edition, P.A. Winston and S. Narasimhan
 http://www.ai.mit.edu/people/phw/OnToJava/ [beginner and intermediate levels]

Articles:
- *Selected seminal papers on agent-based, network, and supply-chain enterprise simulation modeling concepts, approaches, and application domains*

Software

Tools and Documentation:
DEVS-Suite component-based simulation and CoSMo visual modeling tools. Eclipse (http://www.eclipse.org/) IDE will be used for simulation model development. For further detail refer to the course webpage.

Prerequisites:
Graduate standing. Programming maturity is assumed. Prior object-orientation modeling experience is helpful, although not assumed.

Course Objectives: Present concepts of computer-based modeling and simulation applicable to various domains of engineering and science. Provide theoretical concepts, methods, and hands-on experience with object-oriented modeling and simulation. Students are expected to gain a solid foundation and associated experience for computer-based tool set for constructing, simulating and analyzing models of complex systems.
Course Description:
The course covers modeling and simulation concepts and discrete-event in particular. Application of theories, methods, and practices are covered during the semester. The course materials are divided into two parts. The first part provides background review and discussion on systems modeling concepts and overview of object-oriented programming languages. This first part contains comprehensive discussions on how to formulate and execute (simulate) models in a software engineering-like lifecycle. During this part, students are engaged in details study of modeling elements, simulation protocols, and their relationships including verification and validation. In-class description of modeling and simulation techniques will be illustrated by examples developed in the CoSMo (Component-based System Modeling) modeling and DEVS-Suite simulation environments. During the semester students will gain hands-on experience (via homework assignments and projects). Students will create increasingly more complex models, which can be subsequently simulated and analyzed. The second part focuses on selected advanced topics aiding individual and team members’ projects. An important part of the course experience is through the class project. Each project involves demonstrating the application of course concepts, theory, and techniques (see Project section below) to student’s application of interest. Students may also choose to focus on M&S methodologies and theories.

Online Students:
Lectures will be made available via video streaming. Information is available on the Course webpage.

Homework Assignments/Exams:
There will be 4-6 homework assignments. Homework assignments include conceptualizations, model formulations, simulations, etc. Late homework will be accepted only in exceptional circumstances which need to be discussed with the instructor for approval and as long as the solution is not discussed or made available. Use standard size paper and include your name and homework assignment number at the top or on the cover page. Midterm exam will be based on the course materials – i.e., lectures, homework assignments, and readings. See table below for dates and locations.

<table>
<thead>
<tr>
<th>% final grade</th>
<th>Date/Time</th>
<th>Location (on-campus)</th>
<th>Location (off-campus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework</td>
<td>30%</td>
<td>NA</td>
<td>BYAC-220</td>
</tr>
<tr>
<td>Exam</td>
<td>30%</td>
<td>04/07/09§</td>
<td>BYAC-220</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1:30 – 2:45 pm</td>
<td></td>
</tr>
</tbody>
</table>

§ Tentative

Project:
Early in the semester, students will consult with the instructor to determine a project topic that benefits from their overall academic objectives or current professional activities (see table below for due dates). Possible modeling and simulation domains are numerous including enterprise engineering, artificial and ecological agents, computer and social networks, embedded devices and networks, software engineering, and system biology (see Blackboard and ACIMS website for a sample of previous project topics). Projects can be carried out either individually or as two-member teams. Projects can focus on student’s interest including thesis or dissertation research topic.

<table>
<thead>
<tr>
<th>% final grade</th>
<th>Preliminary Project (due date, % final grade)</th>
<th>Presentation (due date, % final grade, time)</th>
<th>Final Project (due date, % final grade)</th>
<th>Presentation (due date, % final grade, time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project</td>
<td>03/19/09, 10%</td>
<td>03/24/09, 2%</td>
<td>04/30/09, 24%</td>
<td>05/05/09, 4%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>05/12/09, 4%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12:20 – 2:10</td>
</tr>
</tbody>
</table>

Final project report grading:
- Introduction and problem description: 20%
- Analysis and simulation model formulation: 30%
- Simulation models, approach, and results: 40%
- Conclusion: 10%
Grading Policy and Grade Distribution:
Course grade is based on 10-point scale (it may be relaxed at the discretion of the instructor). Students are responsible for all material covered and discussed during lectures as well as announcements made either during class, email, and/or Blackboard. Examinations may not be taken separately except in special situations with prior arrangement at least one week in advance. Participation is an essential part of the course and highly encouraged. Grade distributed is

<table>
<thead>
<tr>
<th>% total score</th>
<th>≥97</th>
<th>≥93</th>
<th>≥90</th>
<th>≥87</th>
<th>≥83</th>
<th>≥80</th>
<th>≥75</th>
<th>≥70</th>
<th>≥60</th>
<th><60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter grade</td>
<td>A+</td>
<td>A</td>
<td>A-</td>
<td>B+</td>
<td>B</td>
<td>B-</td>
<td>C+</td>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>Points for GPA</td>
<td>4.33</td>
<td>4.00</td>
<td>3.67</td>
<td>3.33</td>
<td>3.00</td>
<td>2.67</td>
<td>2.33</td>
<td>2.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Homework | Midterm Exam | Project
Grade Distribution | 30% | 30% | 40%

Withdrawals: In-Person withdrawal deadline is April 3rd. Interactive ASU withdrawal deadline is April 5th; complete withdrawal deadline is May 5th. Ceasing attendance does not automatically drop you from the course. IF YOU ARE STILL ON THE CLASS ROLL AT THE END OF THE SEMESTER, YOU WILL RECEIVE 0's FOR ANY WORK NOT COMPLETED AND WILL BE GRADED ACCORDINGLY.

Academic Integrity and Ethics:
ASU’s Code of Academic Integrity (http://www.asu.edu/studentaffairs/studentlife/judicial/ states that students shall not “represent the work of others as their own.” The Computer Science and Engineering department requires all students to adhere to ASU’s policy on Academic Honesty. This policy will be applied to all work submitted for grade, including term paper, exams, and homework assignments. The minimum penalty for submitting work that is not your own is an E grade. Note: You are encouraged to discuss class assignments with your instructor and your fellow students. However, any work submitted as part of course work must be your own work. I.e., final work submitted by student must represent his/her own individual efforts unless stated otherwise by the instructor. University policy states that any act of cheating will result in receiving an XE for the course indicating failure due to disciplinary action.

Topics Covered*:
1. Introduction to modeling and simulation
2. Modeling theories, worldviews, and application domains
3. Conceptual model development and simulation approaches
4. System-theoretic and object-oriented modeling principles and methods
5. Modeling approaches and simulation techniques
6. Hierarchical, modular, component-based modeling
7. Multi-aspect, multi-resolution component-based system modeling
8. DEVSJAVA simulation and SESM modeling environments
9. Design of simulation experiments
10. Discrete event simulation protocol concepts and techniques
11. Simulation design complexity
12. Agent-based simulation modeling
13. Model composability and simulation interoperability
14. Model validation and simulation verification

* subject to change.